INDIAN SCHOOL MUSCAT
SECOND TERM - EXAMINATION

PHYSICS (042)
CLASS: XI
TERM 2
Max. Marks: 35
SET-B
MARKING SCHEME

MARKING SCHEME		
$\begin{array}{\|l} \text { QN.N } \\ \text { O } \end{array}$	VALUE POINTS	MARKS SPLIT UP
	SECTION A	
1.	(a) According to first law of thermodynamics: - The change in the internal energy of a closed system is equal to the amount of heat supplied to the system, minus the amount of work done by the system on its surroundings. $\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}$ Where: $\Delta \mathrm{Q}$ is the heat supplied to the system by the surroundings $\Delta \mathrm{W}$ is the work done by the system by the surroundings $\Delta \mathrm{U}$ is the change in internal energy of the system.	1
2.	(a) Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are Inversely proportional to the temperature. (b) Latent heat of fusion of a solid is defined as the amount of heat required to convert a unit mass of the substance from the solid state to the liquid state Without changing the temperature. (OR) (a) Stefan's law of radiation: The quantity of radiant energy emitted by a perfect blackbody per unit time per unit surface area of the body is directly proportional to the fourth power of its absolute temperature. (b)Latent heat of vaporization is defined as the amount of heat required to convert a unit mass of the substance from the liquid state to the vapors state without changing the temperature.	1 1 1
3.	differences between transverse and longitudinal waves.	$1+1$
	SECTION - B	
4.	A motion be Simple harmonic motion only when, 1. Acceleration of particle is just opposite to motion of body 2. Acceleration is directly proportional to displacement e.g., $a=-\omega^{2} x$	1 dig.

$10 .$		1 diagram $4 \times 1 / 2$ for marking Each point
11.	From pascal's law $\begin{gathered} \mathrm{P}_{1}=\mathrm{P}_{2} \\ \frac{\mathrm{~F}_{1}}{\mathrm{~A}_{1}}=\frac{\mathrm{F}_{2}}{\mathrm{~A}_{2}} \\ \frac{\mathrm{~F}_{1}}{\pi \mathrm{r}_{1}^{2}}=\frac{\mathrm{F}_{2}}{\pi \mathrm{r}_{2}^{2}} \\ \mathrm{~F}_{1}=\frac{\mathrm{F}_{2} \mathrm{r}_{1}^{2}}{\mathrm{r}_{2}^{2}} \\ \mathrm{~F}_{1}=\frac{1350 \times 9.8 \times\left(5 \times 10^{-2}\right)^{2}}{\left(15 \times 10^{-2}\right)^{2}} \\ \mathrm{~F}_{1}=1470 \mathrm{~N} \\ \mathrm{~F}_{1}=1.47 \times 10^{3} \mathrm{~N} \\ \mathrm{P}_{1}=\mathrm{F}_{1} / \mathrm{A}_{1} \\ \mathrm{P}_{1}=1.9 \times 10^{5} \mathrm{~Pa} \end{gathered}$ $=2.8 \times 10^{-2} \mathrm{~N} / \mathrm{m}$	$1 / 2$ 1 1 1
	SECTION C	$1 \times 5=5$
12	(i) C (ii) A (iii) B (iv) C (v) B	

